Recent study finds House plants help to clean many common indoor air pollutants found in homes and o
Timothy Jones, Geoffrey Peterson, Diana Rispoli
Tjones4@oswego.edu
Cell: (845)-701-1788
SUNY Oswego
Analytical Chemistry
Vadoud Niri
Vadoud.niri@oswego.edu
Oral Presentation
Monitoring Volatile Organic Compounds Removal by Indoor Plants
Volatile organic compounds (VOC’s) are an extensive class of chemical compounds which exist as gasses at ambient standard temperature and pressure. The health risks associated with this broad class of chemicals range from tiredness and acute nausea to central nervous system damage and cancer. VOC’s are found in much higher concentrations in indoor environments than outdoors, with particularly high concentrations in new buildings. Our investigation Aimed to monitor the reduction of VOC’s by naturally occurring biochemical pathways found in plants.
Using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry, the rate of VOC decay in an airtight sampling apparatus was measured using five common
household plants. The plants selected included three CAM plants including
Guzmania lingulata
,
Cassula argentea
,
Consolea facata, and two C3 plants including
Chlorophytum comosum and Dracaena fragrans. Three treatment conditions were applied to each plant to isolate active VOC uptake mechanisms covering the base of the plant in foil, no foil, and the use of a light. Of the five plants,
Guzmania lingulata
showed the greatest overall VOC uptake in Light treatment
conditions with more than 80% removal of six of the eight target VOC compounds over a
twelve-hour sampling period. All the plants tested showed less than 50% removal of
dichloromethane or trichloromethane over the twelve-hour sampling period. The findings
from this study suggest that certain plants have the capacity to remove airborne VOC’s, but the efficacy of removal depends on chemical compounds and the mechanism of uptake utilized by
each plant. VOC reduction varied, but ubiquitous among all plants that were tested. These
promising results will hopefully help to choose the right plants for buildings based on type of
potential volatile organic compounds.